设计工具
应用

美光 HBM3E:高带宽内存助力 AI 未来发展

Viral Gosalia | 2024 年 5 月

美光近期发布的内存和存储产品组合创新备受瞩目,这些成就加速了 AI 的发展。美光 8 层堆叠和 12 层堆叠 HBM3E 解决方案提供业界前沿性能,功耗比竞品1低 30%。美光 8 层堆叠 24GB HBM3E 产品将搭载于 NVIDIA H200 Tensor Core GPU 中。在 Six Five Media 最近的一期节目中,主持人 Daniel Newman(Futurum Group 首席执行官)和 Patrick Moorhead(Moor Insights & Strategy 首席执行官)与美光产品管理高级总监 Girish Cherussery 进行了视频访谈。他们探讨了高带宽内存 (HBM) 的广阔市场,并研究了其在当今技术领域的各种应用。这篇文章回顾了他们的谈话,其中话题包括 HBM 的复杂性、美光如何满足市场需求以及目前内存生态系统的发展情况。Girish 还为渴望了解 AI 内存和存储技术市场趋势的听众提供了宝贵的见解。

美光高管 Girish Cherussery 接受 Six Five Insider 访谈

美光高管 Girish Cherussery 的访谈视频

什么是高带宽内存?有哪些应用领域?

 

HBM 作为行业标准的封装内存,是一款变革性产品。其以较小的尺寸,在给定容量下实现更高的带宽和能效。正如 Girish 在 Six Five 播客节目中所言,AI 应用部署越来越多的复杂大语言模型 (LLM),由于 GPU 内存容量和带宽有限,训练这些模型面临着挑战。大语言模型的规模呈指数级增长,远远超过了内存容量的增长速度。这一趋势凸显了对内存容量日益增长的需求。

以 GPT-3 为例,该模型有大约 1750 亿个参数。这意味着需要约 800GB 的内存及更高的带宽,以防止出现性能瓶颈。最新的 GPT-4 模型的参数更多(估计达到万亿个)。采用传统方法增加内存器件会导致系统成本过高。

HBM 提供了一种高效的解决方案。美光基于其业界前沿 1β (1-beta) 技术,推出 11mm x 11mm 封装规格堆叠 8 或 12 层 24Gb 裸片的 HBM3E 内存,提供 24GB 或 36GB 容量。美光先进的设计和工艺创新,助力 HBM3E 实现超过 1.2 TB/s 的内存带宽,超过 9.2 Gb/s 的引脚速率。正如 Girish 所言,HBM3E 拥有 16 个独立的高频数据通道,类似于“高速公路车道”,可以更快地来回传输数据,提供所需性能。
 


美光 HBM3E 更高的容量和带宽缩短了大语言模型的训练时间,为客户节省了大量运营支出。HBM3E 容量更大,支持规模更大的大语言模型,有助于避免 CPU 卸载和 GPU 之间的通信延迟。

HBM3E 功耗很低,因为主机和内存之间的数据路径较短。DRAM 通过硅通孔 (TSV) 与主机通信,Girish 将其形象地比喻为牙签穿过汉堡。其从底层颗粒获取电源和数据,然后将其传输到顶部内存层。凭借基于 1β 制程节点的先进 CMOS 技术创新,以及多达 2 倍硅通孔和封装互连缩小 25% 的先进封装创新,美光 HBM3E 的功耗比竞品低 30%。在每个内存实例 8Gbps 的速率下,功耗降低了 30%,以拥有 500,000 个 GPU 安装基数的客户为例,仅在五年内就可以节约超过 1.23 亿美元运营成本。12

因此,正如 Daniel Newman 所言,美光 HBM3E 内存在容量、速度和功耗方面表现优异,对数据中心的可持续发展需求产生了积极影响。
 

美光 HBM3E 如何满足生成式 AI 和高性能计算的需求?
 

美光相信通过解决各种技术问题,可以帮助人们应对所面临的根本性难题,丰富所有人的生活。

如今,超级计算机模拟技术带来了巨大的内存和带宽需求。正如 Girish 所言,在新冠疫情期间,制药公司迫切需要找到用于治疗新冠病毒的新药物和化合物。HBM 作为高性能计算系统器件,可满足大规模计算的需求,解决当今时代的关键难题。因此,HBM 作为支持大规模计算系统发展的重要器件,以其紧凑的外形尺寸提供所需的性能和容量,同时大幅降低功耗,从根本上改变了人们对内存技术的看法。

随着 AI 时代计算规模的不断扩大,当下的数据中心面临着耗电量高、缺乏建设空间的难题。AI 和高性能计算 (HPC) 工作负载推动提高内存利用率和容量。冷却数据中心所需的能源消耗巨大,也是个挑战。对于采用 HBM 的系统而言,系统冷却位于 DRAM 堆栈顶部,而底部颗粒和 DRAM 层功耗所产生的热量则位于堆栈底部。这要求我们在设计的早期阶段就考虑功耗和散热问题。美光先进的封装创新技术提供了改善热阻抗的结构解决方案,有助于改善立方体的散热表现。结合大幅降低的功耗,整体散热表现将大大优于竞品。美光 HBM3E 的功耗更低、散热效率更高,有助于应对数据中心面临的重大挑战。
 

AI 内存解决方案的新兴趋势是什么?
 

生成式 AI 在从云到边缘的各种应用中迅速普及,推动了异构计算环境中系统架构的重大创新。AI 正在加速推动边缘应用的发展趋势,如工业 4.0自动驾驶汽车AI 个人电脑和 AI 智能手机等。正如 Girish 所分享的,这些长期趋势推动了内存子系统的重大技术创新,以提供更高的容量、带宽、可靠性和更低的功耗。

美光基于 1β 技术的 LPDDR5X 产品组合为这些系统提供了出色的性能/功耗,可用于边缘 AI 推理。美光率先在市场上推出基于 LPDDR5X 的创新型 LPCAMM2,旨在提升个人电脑用户的体验,推动 AI 个人电脑革命。

数据中心架构也在不断演变。美光单颗粒大容量 RDIMM 推动了全球数据中心服务器在 AI、内存数据库和通用计算工作负载方面的进步。我们率先上市的 128GB 大容量 RDIMM 性能卓越、容量大、延迟低,可高效处理需要更大容量内存的应用程序,包括从 GPU 卸载到 CPU 处理的 AI 工作负载。

我们还看到,由于 LPDDR 内存(低功耗 DRAM)在性能/功耗方面的优势,越来越多的数据中心将其用于 AI 加速和推理应用。美光显存 GDDR6X 的引脚速率达到惊人的 24 Gb/s,也被用于数据中心的推理应用中。

美光率先推出的另一种新兴内存解决方案 CXL™ 内存,可为数据中心应用提供内存和带宽扩展。美光 CXL 内存模块 CZ120 可为 AI、内存数据库、高性能计算和通用计算工作负载提供内存扩展。

AI 正在为人类开创一个新时代,触及我们生活的方方面面。随着社会不断利用 AI 的潜力,AI 将继续推动数字经济中各行业的快速创新。数据是数字经济的核心,也是内存和存储解决方案的核心。美光已做好准备,凭借其技术实力、创新内存和存储解决方案的强大产品组合及强有力的路线图,以及致力于通过改变世界使用信息的方式丰富全人类生活的承诺,助推 AI 革命。

 

1 基于客户对美光和竞品 HBM3E 的测试及反馈

2 来源:美光内部模型

Director of Strategic Marketing, CNBU

Viral Gosalia

Viral Gosalia is the Director of Strategic Marketing for Micron's Compute and Networking Business Unit. He leads a team that collaborates with compute partners to enable Micron’s memory portfolio across platforms and drives the CNBU's outbound marketing and strategic planning initiatives.

Viral joined Micron in 2019, serving in various capacities across Sales and Business Units in India and the US. He holds Bachelor's degree in Electronics and Telecommunication from Mumbai University and Master's degree in Electrical Engineering from San Jose State University.